Math 53: Multivariable Calculus

Worksheet for 2020-09-23

Problem 1. Here are some conceptual questions on the second derivative test. Let *D* be the Hessian determinant. When performing the second derivative test, there are a number of cases you consider (see last page of Lecture 08 slides):

- D(a, b) > 0 and $f_{xx}(a, b) > 0$
- D(a,b) > 0 and $f_{xx}(a,b) < 0$

•
$$D(a,b) < 0$$

Regarding this procedure:

- (a) What's the conclusion in each scenario?
- (b) In the first two scenarios, why do we look at f_{xx} instead of f_{yy} ? (Is there a difference?)
- (c) The case D(a, b) = 0 is missing. Explain why it's missing.
- (d) The case D(a, b) > 0 and $f_{xx}(a, b) = 0$ is also missing. Explain why it's missing.
- (e) Can you find an example of a function f(x, y) such that (0, 0) is a critical point of f, $f_{xx}(0, 0)$ and $f_{yy}(0, 0)$ are both strictly positive, but (0, 0) is *not* a local minimum?

(a) Local min in first, local max in second, saddle pt. in third.
(b) Assuming
$$D(a,b) > 0$$
, examining
 $0 < D(a,b) + f_{xy}(a,b)^2 = f_{xx}(a,b) \cdot f_{yy}(a,b)$
shows that f_{xx} and f_{yy} have the same sign letter both are positive or both are
regative).
(c) It's mossing ble it's incanclusive. Consider $x^4 + y^4$, $x^4 - y^4$, and $-x^4 - y^4$.
(c) It's mossing ble it's incanclusive. Consider $x^4 + y^4$, $x^4 - y^4$, and $-x^4 - y^4$.
(c) It's mossing ble it's incanclusive. Consider $x^4 + y^4$, $x^4 - y^4$, and $-x^4 - y^4$.
(c) is a critical pt. for all of these. All second order partial derivatives are zero
(in particular $D=0$) but $(0,0)$ is a local min in the first, saddle in second,
and local max in third.
(d) It's not possible: $0 < D(a,b) = f_{xx}(a,b) f_{yy}(a,b) - f_{xy}(a,b)^2 \leq 0$ results in
 $= \int_{0}^{10} f(x,y) = x^2 + y^2 + 100 xy$ works (check!)

Problem 2 (Stewart §14.7 #22). Consider the function $f(x, y) = x^2 y e^{-x^2 - y^2}$. Show that

- (a) Show that $(\pm 1, 1/\sqrt{2})$ are local maxima and $(\pm 1, -1/\sqrt{2})$ are local minima.
- (b) **Actually *f* has infinitely many other critical points. Find them, and classify them.

(a) $\forall f(x_1y) = \langle -2x(x^2-1)ye^{-x^2-y^2} \rangle$, $x^2(1-2y^2)e^{-x^2-y^2} \rangle$ Note: $e^{-x^2-y^2} > 0$ (it is never = 0) So $\forall f(x,y) = 0$ amounts to Fasy (but pain ful) to check the $\int x(x^2-1)y = 0$ rest of (a) from here, $\int x^2(1-2y^2) = 0$. So $\forall f(x,y) = 0$ so $\forall f(x,y) = 0$.

(b) The other solutions to the above eq. are when
$$x=0$$
 and $y=$ anything.
 $f(0,b)=0$. other critical pts.
 $f=0$.
 $f=0$.
 $f>0$
 $(x^2>0 \text{ and } y>0)$
 $f<0$
 $f<0$
 $(x^2>0 \text{ and } y<0)$
 $f<0$
 $(x^2>0 \text{ and } y<0)$
 $f<0$
 $(x^2>0 \text{ and } y<0)$